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Minimization of Reflection Error Caused by
Absorbing Boundary Condition in the FDTD
Simulation of Planar Transmission Lines

Krishna Naishadham, Member, IEEE, and Xing Ping Lin, Member, IEEE

Abstract—Residual reflection from absorbing boundaries intro-
duces considerable error in the frequency-domain parameters of
open-region planar transmission line components simulated in the
time-domain. Various dispersive and super-absorbing boundary
conditions have been developed to minimize this reflection. In
this paper, a computationally efficient method, termed as geom-
etry rearrangement technique (GRT), is proposed to correct the
dominant reflection from absorbing boundaries by superposition
of two subproblems with different source or boundary locations.
The computational improvement of GRT is demonstrated by
the FDTD simulation of dispersion in microstrip and coplanar
transmission lines, A new method is discussed to accurately
estimate the boundary reflection, and then applied to correct
the characteristic impedance of planar transmission lines for
boundary reflection.

I. INTRODUCTION
SINCE THE INTRODUCTION of the finite-difference

time-domain (FDTD) method by Yee in 1966 [1], it has '

been used by many researchers to characterize the broad-
band dispersive behavior of planar transmission lines and the
scattering (S) parameters of passive microstrip components
(cf. [2]1-15D). In order to simulate infinite space relevant to
open structures, various absorbing boundary conditions (ABC)
have been developed (see [6] for a comparative study of ABC
applicable to waveguiding problems), with Mur’s first-order
ABC [7] commonly used in the FDTD analysis of planar mi-
crowave circuits. Recently, more accurate boundary conditions
have been proposed, such as superabsorption [8] and perfectly
matched layer (PML) [9]. Although these advancements in
ABC significantly decrease the residual reflection in the time
domain, they are more complicated in implementation than the
simple ABC’s such as Mur’s. Second, the FDTD method for
planar circuits is quite memory-intensive since the core mem-
ory is directly proportional to the number of cells used in the
discretization of the computational volume. The computational
volume can be reduced by using a low-reflection ABC such as
Berenger’s PML, which allows close proximity between the
boundary wall and the circuit away from discontinuities.
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Fig. 1. Two identical transmission lines with relocation of the source in the
second. The source locations 51 and S are separated by a distance AL.

It is possible to reduce the computational domain even
for the simple Mur’s ABC, if the boundary reflection can
be accurately estimated and applied to correct the computed
parameters [10], [11]. Becker [10] uses least squares min-
imization to estimate the dominant reflection from the far-
end longitudinal boundary (Fig. 1) on a microstrip line, and
invokes transmission line theory to correct the S-parameters
of microstrip interconnects. Zhang et al. {2] employ a super-
position of two subproblems with magnetic and electric walls
to cancel the boundary reflection. In contrast, we employ a su-
perposition of two subproblems, formulated by a geometrically
simple rearrangement of either the exciting planar source or
the absorbing boundary, to correct residual boundary reflection
in the FDTD-computed parameters of planar transmission lines
[11] and microstrip discontinuities [12], [13]. The procedure,
termed as the geometry rearrangement technique (GRT) for
convenience in further reference [11], is much simpler to
implement than that in [10], because no auxiliary calculations
are needed to correct the reflection error after the FDTD
implementation.

In this paper, we introduce a simple procedure, based on
GRT, to estimate the dominant reflection from absorbing
boundary in an FDTD implementation, and describe how the
reflection errors can be corrected in the effective dielectric
constant (EDC) and the characteristic impedance of planar
transmission lines. Although, for simplicity, we have chosen
Mur’s first-order ABC in the FDTD implementation, GRT
can correct the error introduced by any ABC employed. The
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computed results on microstrip and coplanar transmission lines
indicate that the far-end longitudinal boundary can be located
within 1-5 cells beyond the appropriate field sampling loca-
tion, and yet, accurate results can be obtained in comparison
with published data, without any necessity for curve-fitting.

The details of Yee’s FDTD implementation, omitted in
this paper, can be found in a few seminal articles which
deal with electromagnetic field simulation of planar circuits
in the time-domain [2]-[5]. In the next section, we briefly
outline two different formulations of GRT, namely, source
relocation and boundary relocation, to compute the effective
dielectric constant. Section III describes a new technique to
estimate the dominant reflection induced by the absorbing
boundary. Section IV explains how the computed reflection
coefficient can be employed to accurately determine the char-
acteristic impedance. Sample results on the characterization
of microstrip and coplanar transmission lines are presented
in Section V, and concluding remarks are summarized in
Section VI.

II. GEOMETRY REARRANGEMENT TECHNIQUE

In the conventional FDTD method [2], the frequency-
dependent EDC is calculated from Fourier-transformed voltage
(or electric field) at two different points on a single trans-
mission line. In order to reduce the influence of boundary
reflection, the line needs to be long enough such that, ide-
ally, only forward traveling waves exist. For convenience in
notation, we will refer to this implementation as single-run
FDTD (SFDTD) method to calculate the EDC. With V; and
V4 denoting transforms of the FDTD-computed voltage at the
points P; and P» (see Fig. 1a), we have

i Vi

e V(WAL A (1)
where AL = Ly — L1, v(w) = o(w) + j8Ww), Blw) =
~r /[V1/Va]. The EDC is given by
_ P

corr(0) = w?€oho

where w is the angular frequency and 19, g are the constitutive
parameters of free space.

Equation (1) neglects the reflection error induced by an
imperfect ABC. We now examine how such error influences
the computed EDC. We treat the far-end wall (Fig. 1) as a
lumped load at the end of the transmission line, characterized
by a frequency-dependent reflection coefficient I'f. Likewise,
the reflection coefficient at the source-end boundary is I',. The
remaining four walls, if absorbing, are assumed to be located
far enough from the circuit (usually 2-5 strip widths away for
the microstrip and about 5 slot widths away for the coplanar
geometry) that their reflection can be neglected in comparison
to the longitudinal reflection. The voltages V; and V; are
then given by the superposition of longitudinally propagating
incident wave and multiple reflections from source and far-
end boundaries, and may be expressed by invoking standard
transmission line theory as
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where Vi, Voi, are incident voltages at Py, Ps, respectively,
L is the length of the line between the boundaries (Fig. 1),
and J(w) is the true propagation constant from which EDC
must be calculated. From (1), (3), and (4), we obtain
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The true propagation constant should be calculated from
e~ TWAL _ E (6)

VYZin
instead of (1) or (5), which are corrupted by boundary reflec-

tion. Equation (6) follows from (3) if Ly = L». How to realize
this condition is the basis for GRT, discussed next.

A. Source Relocation GRT

The condition L; = Ly cannot be realized on a single
transmission line since the two points P; and P, coalesce
into one and AL becomes zero. However, if two transmission
lines with the same characteristics are used instead of one, as
in Fig. 1, we can use voltage V3 at point P3 on the second
line to simulate voltage Vo at point P, on the first line. This
is accomplished by relocating the source in the second line
(identical to that in the first line) by a distance AL closer to
the far-end boundary. Since P3 and P, are equidistant from
the source (Fig. 1), it follows that the incident wave amplitude
V3in = Vain and Lz = L1. The voltage V3 is given by (4) with
L, replaced by Ls. Expressing Vi3, and Vo, in terms of V3
and V3, respectively, one obtains from (6)
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Therefore, the result calculated from voltages sampled at Py
and Ps, located on two identical transmission lines such that
L3 = L, (Fig. 1), is an accurate numerical result, since it does

not contain the error introduced by I'y or I',.

€

B. Boundary Relocation GRT

There is another way to cancel the far-end reflection,
namely, to relocate the far-end boundary instead of the source
on the second transmission line. This is illustrated in Fig. 2,
where we observe that Va;, = Voy,, Ls = Ly — AL = L, and
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Neglecting the composite reflection I'fI's, which is small
compared to unity (e.g., see Fig. 3), and using Ly = L
(Fig. 2), it follows that
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Accurate propagation constant can thus be obtained with
the boundary relocation technique as well. The reflection
coefficient at the far-end boundary, I'y, can be estimated as
described next.
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Fig. 2. Two identical transmission lines with relocation of the far-end
absorbing boundary in the second. The boundary locations are separated by
a distance AL.

III. ESTIMATION OF THE BOUNDARY REFLECTION

GRT can be used to estimate the boundary reflection caused
by an imperfect ABC. With reference to either scheme of GRT
(Fig. 1 or Fig. 2), let C = V, /V,, where V; and V5 are Fourier
transforms of the FDTD-computed voltage on the first line at
Py and P, respectively, and G = Vi V3, with V3 calculated
on the second line at Ps. Then, we obtain from (5), (6), and (7)

1 £ T 29 14T, GRL/AL

Solving (10) for I's, we obtain
G-C
Iy = a1

GRL:/ADY O — (L /ALY+L)

The reflection coefficient at the boundary is calculated using
(11). Therefore, by a simple superposition of two problems
with different source or boundary locations, the frequency-
dependent reflection coefficient at the boundary can be esti-
mated.

As an example, we consider a microstrip line with dielectric
constant €, = 2.2, strip width W = 2.394 mm, and substrate
thickness A = 0.795 mm. Two transmission lines are sim-
ulated, with one line 120 cells long and the other 90 cells

long. Both are terminated with Mur’s first-order ABC [7]. The.

longer line is simulated to obtain C and the shorter one, to
calculate G. The cell dimensions are given by Az = 0.399
mm, Ay = 0.265 mm, and Az = 0.40 mm (see Fig. 1
for definition of coordinates). The number of cells along =z
and y directions, respectively, is given by N, = 60 and
N, = 15. The other dimensions are: L1 = L3 = 10Az,
- AL = 30Az and L, = 40Az. The magnitude of the
Mur’s first-order boundary reflection coefficient, calculated
from (11) using the boundary relocation GRT, is shown in
Fig. 3. Also shown for comparison is an independent result,
obtained using the spectral domain Prony’s method [14].
Prony’s method computes the reflection coefficient directly
without the need for solving two auxiliary problems. The GRT
(or the present) and Prony’s results are in good agreement, and
predict that Mur’s ABC causes about —32 dB of reflection for
the microstrip geometry. The GRT result clearly shows the
periodic oscillat sty behavior of the reflection coefficient as a
function of freq?lre{ﬁ@y.
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Fig. 3. Reflection coefficientfor Mur’s first-order ABC applied to the mi-
crostrip geometry.

IV. CHARACTERISTIC IMPEDANCE

Once the reflection coefficient at the location of the ab-
sorbing boundary is estimated, it can be used to correct
the computed parameters.for the reflection error. We now
describe how such a correction can be accomplished for the
characteristic impedance. With reference to Fig. 1, the current
at the location P; is given by

| - Tje 2@
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(12)

where I;;, is the complex incident current in the plane P;.
The net complex current I; is determined by integrating the

frequency-domain magnetic field intensity along a rectangular

contour in plane P; described around the transmission line
conductor., Expressing Vs, in terms of V; using (3), and Iy;, in
terms of I; using (12), one obtains the charactristic impedance

Vim _ Vi1 —T eV

Zo = = —_—,
0 Iiin I1 1+ Pfe_z"/(“’)l‘l

13)

Because the voltage and current reflection coefficients differ
in sign, it is evident that the boundary reflection cannot
be canceled for Zy by a simple rearrangement of geometry
described in Section II for the EDC. Instead, I ; is estimated as
described in Section III, and then substituted in (13) to correct
the characteristic impedance. In the conventional FDTD im-
plementation, the characteristic impedance is computed from
the' net voltage V; and the net current I; as

=7

which is subject to error introduced by boundary reflection.

Z 14

V. TEST RESULTS

A. Effective Dielectric Constant

We have calculated the effective dielectric constant of a
microstrip line using the source relocation GRT, and a coplanar
waveguide (CPW) using the boundary relocation GRT. The
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TABLE I
COMPUTATIONAL PARAMETERS
Parameter Microstrip Line | CPW
Substrate dielectric constant 13.0 12.9
Thickness of the substrate (mm) 0.1 0.5
Width of the center strip (mm) 0.15 0.135
Width of the lateral strips (mm) 0.59
Slot width (mm) 0.065
Cell size Az = Ay = Az (mm) 0.0125 0.0135
Time step At (ps) 0.0215 0.0176
Numbers of cells (GRT) Ny x Ny x N, 55 x 30 x 30 60 x 55 x 60
Number of cells (SFDTD) Ny x Ny x N, | 55 x 30 x 160 60 x 55 x 160
Number of time steps 4096 4096
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Fig. 4. Frequency-dependent effective dielectric constant of the microstrip transmission line.

parameters used in the two computations are summarized in
Table I. The same microstrip line has been analyzed by Zhang
et al. [2] using the FDTD method. They have minimized the
reflection error from ABC by superposing the solution of
two subproblems whose domains are terminated by electric
and magnetic walls, respectively. However, they use 160
cells longitudinally for each subproblem in order to reduce
the interference from the walls. In contrast, the GRT/FDTD
implementation employs only 30 cells longitudinally for each
of the subproblems in Fig. 1, thereby achieving at least five-
fold savings in computer memory and CPU time. We employ
first-order Mur’s ABC on all the walls except the ground plane.
A planar Gaussian pulse specified by

2
E. = exp—{(t - to)/ T} (15)
where o = 150At, T = 50At, excites the field 10 cells

away from the z = 0 plane. The computed results are
shown in Fig. 4. The conventional (or SFDTD result) shows
periodic oscillation around the GRT result, caused by boundary
reflection. The GRT result is quite smooth and agrees very
well (within 1%) with the empirical formula of Edwards and
Owen [15], and with the FDTD result computed in [2]. Tt
is emphasized that no curve-fitting has been employed to
generate the smooth curve for GRT.

Next, we characterize the dispersion in a CPW, whose
parameters are displayed in Table I. The same geometry has
been analyzed by using FDTD in [16]. However, instead of
using the time-consuming superabsorption boundary condition,
we employ the simple first-order Mur’s ABC on all the walls,
and correct the ensuing errors.

The numerical results for the CPW are shown in Fig. 5.
Four curves are shown—the conventional (or SFDTD) result,
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Fig. 5. Frequency-dependent effective dielectric constant of the coplanar transmission line.

the GRT result, the least squares fit to the GRT data, and
Whinnery’s empirical formula [17]. It is observed that the
maximum deviation between the GRT data and their least
squares fit is less than 1.5%. The SFDTD result, on the other
hand, oscillates around these two curves, and produces more
than 12% deviation from the least squares fit to the GRT data.
The least squares fit agrees reasonably well with the empirical
formula, the error between the two being less than 1% up
to about 100 GHz. Therefore, considerable improvement in
computational accuracy of the EDC can be achieved, even for
the CPW, by using GRT with a simple absorbing boundary
condition instead of the conventional SEFDTD implementation.
With regard to the superabsorbing boundary condition, the
present approach is faster, but, it does not correct the error
resulting from boundaries other than longitudinal. This error
accounts for the small oscillation in the GRT result. However,
upon comparison of the SFDTD and GRT results, it seems
that reflection from the longitudinal wall is still the main
contributor to the error in SFDTD method.

B. Characteristic Impedance

Fig. 6 displays the frequency-dependent characteristic
impedance of a microstrip line with the same geometrical
parameters as shown in Table I. The impedance has been
computed using (13), and, as such, is corrected for boundary
reflection. For comparison, the result of an empirical formula
from [18] is also shown. The FDTD-computed impedance
approaches closely the quasistatic DC limit predicted by the
empirical dispersion model, and the two results are within 2%
up to about 140 GHz. The empirical model is not valid beyond
the cut-off frequency of the first transverse electric (TE) mode,
which occurs at 155 GHz. Within its range of validity, the
empirical model is believed to be about 2% accurate [19]. Our
FDTD-computed characteristic impedance is found to be in

£ /
5
8
e
§ 1
£
L
3 1
k-
2
§
[}
34
Present method —
Empirical -

32

0 20 40 60 80 100 120 140 160 180 200
Frequency (GHz)

Fig. 6. Frequency-dependent characteristic impedance of the microstrip
transmission line.

good agreement with the corresponding curve in Fig. 6 of [2]
over the entire frequency range of 200 GHz.

The characteristic impedance for the CPW listed in Table I
is computed by the FDTD method and compared in Fig. 7
with the correponding result from Fig. 6(a) of [16]. Good
agreement between the two results is gratifying, given that the
computational domain of the present method is about a fifth
smaller than the domain in [16], and reinforces confidence
in the capability of the present method to compensate for
boundary reflection error. '

VI. CONCLUSION

We have presented a simple method for the correction of
ABC-induced error in the FDTD analysis of planar transmis-
sion line components. GRT involves the solution of two sub-
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Fig. 7. Frequency-dependent characteristic impedance of the coplanar trans-
mission line.

problems differing in geometry only in the position of either
the far-end longitudinal boundary or the exciting source. The
computational requirements. of GRT are less than those of the
conventional FDTD implementation, in which the absorbing
boundary needs to be placed far away from the circuit element
to reduce the boundary-circuit interaction. We have introduced
a new method to estimate the boundary reflection coefficient
and correct the computed circuit parameters. GRT with a
simple first-order ABC has been employed to characterize
the dispersion in EDC and characteristic impedance of planar
transmission lines, and good agreement has been established
between the computed and published results.

It is emphasized that the computational savings are most
significant when GRT is applied to discontinuity problems. We
have used GRT to compute the S-parameters of a microstrip
filter [11], a microstrip bend [13], CPW discontinuities and
filter elements [20]. In all cases, we have observed good
corroboration between computed and measured results.
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